Fas-mediated apoptosis is essential for activation-induced cell death of alpha/beta T cells, but it is not clear what role, if any, it plays in regulating other components of the immune system. To study the role of Fas in gamma/delta T cell development, Fas-deficient lpr mice were bred with T cell receptor alpha gene-ablated (TCR-alpha-/-) mice to generate mice deficient in one or both genes. The TCR-alpha-/-, lpr/lpr mice had a nearly 10-fold increase in total lymph node cell (LNC) number compared with Fas-intact TCR-alpha-/- mice, because of expansion of TCR-gamma/delta+ and TCR-beta+ cells. In Fas-intact TCR-alpha-/- mice, approximately one third of the LNCs expressed TCR-gamma/delta. These were evenly divided between the CD4-, CD8-alpha+ and the CD4-, CD8- subsets, and rarely expressed the B220 epitope of CD45. In contrast, in TCR-alpha-/-, lpr/lpr mice, TCR-gamma/delta+ cells comprised half of the LNCs and were primarily CD4-, CD8-, and B220+. Moreover, Fas deficiency in TCR-alpha-/- mice caused a preferential expansion of gamma/delta T cells expressing variable region genes characteristic of intestinal intraepithelial lymphocytes. These results demonstrate a role for Fas in regulating the gamma/delta T cell contribution to peripheral lymph nodes. This mechanism may be most important in limiting the access of activated intestinal intraepithelial lymphocytes to the peripheral lymphoid system.