The arachidonic acid and the ATP binding sites of human 5-lipoxygenase were characterized using photoaffinity labeling and immobilization of the enzyme on ATP-agarose. Photoaffinity labeling of the active site of 5-lipoxygenase was achieved with a novel thiopyranoindole inhibitor containing a 4-azido-3-iodobenzenesulfonyl moiety (L-708,714). This probe was found to inhibit the activity of 5-lipoxygenase (IC50 = 0.3 microM) and to covalently label the enzyme after UV light irradiation. The labeling was inhibited by arachidonic acid, N-hydroxyurea, and dihydrobenzofuranol inhibitors which have been shown to reduce the non-heme iron center of 5-lipoxygenase. Photoaffinity labeling of 5-lipoxygenase by L-708,714 was dependent on the presence of both Ca2+ ions and phospholipids and was independent of ATP. It occurred at similar levels using native (Fe2+), oxidized (Fe3+), or H2O2-inactivated enzyme, but was abolished by heat inactivation of the enzyme. Competition of the labeling by various thiopyranoindoles and other inhibitors such as L-697,198,ZD-2138, and zileuton was found to be related to their inhibitory potency. Immobilized 5-lipoxygenase on ATP-agarose was found to be selectively eluted by adenine nucleotides (ATP > ADP > AMP) but not by solutions containing high salt concentrations, mild detergents, arachidonic acid, or inhibitors. 5-Lipoxygenase inhibitors were selectively retained on the immobilized enzyme and eluted by buffer containing arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)