Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade injured epithelia. Streptococcus pneumoniae was found to adhere to immobilized fibronectin more avidly than other streptococci and staphylococci do. Binding was dose, time, and temperature dependent. Trypsin treatment of the bacteria resulted in decreased binding, suggesting that the bacterial adhesive component was a protein. Fragments of fibronectin generated by proteolysis or by expression of recombinant gene segments were compared for the ability to bind pneumococci and to compete against bacterial binding to immobilized fibronectin. Fragments from the carboxy-terminal heparin binding domain were consistently active, suggesting that this region contains the pneumococcal binding site, a region distinct from that supporting the attachment of most other bacteria.