The interaction of cells with extracellular matrix proteins plays a critical role in a variety of biological processes. Recent studies suggest that cell-matrix interactions mediated by integrins can transduce biochemical signals to the cell interior that regulate cell proliferation and differentiation. These studies have placed the focal adhesion kinase (FAK), an intracellular protein tyrosine kinase, in a central position in integrin-initiated signal transduction pathways (Zachary, I., and Rozengurt, E. (1992) Cell 71, 891-894; Schaller, M., and Parsons, J. T. (1993) Trends Cell Biol. 3, 258-262). Here, we report data suggesting a possible association of FAK with the cytoskeletal protein talin in NIH 3T3 cells. We have identified a 48-amino acid sequence in the carboxyl-terminal domain of FAK necessary for talin binding in vitro. Furthermore, we have correlated the ability of integrin to induce FAK phosphorylation with its ability to bind talin using a mutant integrin lacking the carboxyl-terminal 13 amino acids. These studies suggest talin may be a mediator for FAK activation in signaling initiated by integrins and may provide an explanation for the dependence on the integrity of actin-cytoskeleton of multiple intracellular signaling pathways converging to FAK activation and autophosphorylation.