Monovalent cations affect both conformational and catalytic properties of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. Their influence on the dynamic properties of the enzyme was probed by monitoring the phosphorescence decay of the unique Trp-177 beta, a residue located near the beta-active site, at the interface between alpha- and beta-subunits. In the presence of either Li+, Na+, Cs+, or NH4+, the phosphorescence decay is biphasic and the average lifetime increases indicating a decrease in the flexibility of the N-terminal domain of the beta-subunit. Since amplitudes but not lifetimes are affected, cations appear to shift the equilibrium between preexisting enzyme conformations. The effect on the reaction between indole and L-serine was studied by steady state kinetic methods at room temperature. We found that cations: (i) bind to the L-serine--enzyme derivatives with an apparent dissociation constant, measured as the concentration of cation corresponding to one-half of the maximal activity, that is in the millimolar range and decreases with ion size; (ii) increase kcat with the order of efficacy Cs+ > K+ > Li+ > Na+; (iii) decrease KM for indole, Na+ being the most effective and causing a 30-fold decrease; and (iv) cause an increase of the kcat/KM ratio by 20-40-fold. The influence on the equilibrium distribution between the external aldimine and the alpha-aminoacrylate, intermediates in the reaction of L-serine with the beta-subunits of the enzyme, was found to be cation-specific.(ABSTRACT TRUNCATED AT 250 WORDS)