To determine whether the general reluctance to begin amino acid administration to preterm infants from birth onward might lead to loss of lean body mass and impairment of growth, we measured amino acid levels and protein kinetics in 18 preterm infants. Nine infants received amino acids (1.15 +/- 0.06 gm.kg-1.day-1) and glucose (6.05 +/- 1.58 gm.kg-1.day-1), whereas the other nine infants received only glucose (6.48 +/- 1.30 gm.kg-1.day-1) from birth onward. Protein kinetics on the first postnatal day were measured with a stable isotope dilution technique with [1-13C]leucine as a tracer. No statistically significant differences were noted in blood pH, base excess, urea concentration, or glucose levels. Both total amino acid concentration and total essential amino acid concentration were significantly lower and were below the reference range in the nonsupplemented group. Plasma amino acid levels of five essential amino acids (methionine, cystine, isoleucine, leucine, arginine) were below the reference range in the nonsupplemented group, whereas only cystine was below the reference range in the supplemented group. Nitrogen retention was improved significantly by the administration of amino acids (-110 +/- 44 mg nitrogen per kilogram per day in the glucose-only group vs +10 +/- 127 mg nitrogen per kilogram per day in the group given glucose and amino acids; p = 0.001); leucine oxidation was not significantly increased in the supplemented group (41 +/- 13 mumol.kg-1.hr-1 vs 46 +/- 16 mumol.kg-1.hr-1). Leucine balance also improved significantly (-41 +/- 13 mumol.kg-1.hr-1 vs -8 +/- 16 mumol.kg-1.hr-1; p = 0.01) because of a combination of an increased amount of leucine being used for protein synthesis and a lower amount of leucine coming from protein breakdown. Plasma cystine concentration, the only amino acid below the reference range in the supplemented group, was highly predictive for protein synthesis in that group. We conclude that the administration of amino acids to preterm infants from birth onward seems safe and prevents the loss of protein mass.