The calcium-binding protein S100A3 is an unusual member of the S100 family, characterized by its very high content of Cys. In order to study the biochemical, cation-binding, and conformational properties, we produced and purified the recombinant human protein in Escherichia coli. The recombinant protein forms noncovalent homodimers, tetramers, and polymers in vitro with a subunit molecular weight of 11,712. The Zn(2+)-binding parameters of S100A3 were studied by equilibrium gel filtration and yielded a stoichiometry of four Zn2+ per monomer with a [Zn2+]0.5 of 11 microM and a Hill coefficient of 1.4 at physiological ionic strength. The affinity for Ca2+ is too low to be determined by direct methods (KCa > 10 mM). Ca(2+)- and Zn(2+)-binding can be followed by optical methods: the Trp-45 fluorescence is high in the metal-free form and addition of Zn2+ and Ca2+, but not of Mg2+, leads to a 4-fold quenching. Ca2+ and Zn2+ promote also quite similar conformational changes in the Tyr and Trp environment as monitored by difference spectrophotometry. Fluorescence titrations with Zn2+ confirmed that there is one set of high affinity binding sites with a [Zn2+]0.5 of 8 microM and a Hill coefficient of 1.3. Binding of Zn2+ to a second set of low affinity sites induces protein precipitation. Fluorescence titrations with Ca2+ confirmed the very low affinity of S100A3 for this ion with a [Ca2+]0.5 of 30 mM and slight negative cooperativity. Mg2+ has no effect on this binding curve. Of the 10 Cys residues in S100A3, 5 only are free thiols, and accessible to 5,5'-dithiobis(2-nitro-benzoic acid); they display a high reactivity in the metal-free and Ca2+ form, but a 20-fold lowered reactivity in the Zn2+ form of S100A3. Ca(2+)-binding promotes the formation of a solvent-accessible hydrophobic surface as monitored by the 60-fold fluorescence increase of 2-p-toluidinylnaphthalene-6-sulfonate, whereas Zn2+ has no noticeable influence. Our data indicate that Ca2+ and Zn2+ do not bind to the same sites and that under physiological conditions S100A3 is a Zn(2+)-binding rather than a Ca(2+)-binding protein; nevertheless, very specific conformational changes are introduced by either Ca2+ or Zn2+. Since no Zn(2+)-binding motif of known structure was identified in the primary sequence of S100A3, the results are suggestive for a novel Zn(2+)-binding motif.