Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity

Eur J Biochem. 1993 Aug 15;216(1):281-91. doi: 10.1111/j.1432-1033.1993.tb18143.x.

Abstract

The nisin gene cluster nisABTCIPR of Lactococcus lactis, located on a 10-kbp DNA fragment of the nisin-sucrose transposon Tn5276, was characterized. This fragment was previously shown to direct nisin-A biosynthesis and to contain the nisP and nisR genes, encoding a nisin leader peptidase and a positive regulator, respectively [van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P. & de Vos, W. M. (1993) J. Bacteriol. 175, 2578-2588]. Further sequence analysis revealed the presence of four open-reading frames, nisB, nisT, nisC and nisI, downstream of the structural gene nisA. The nisT, nisC and nisI genes were subcloned and expressed individually in Escherichia coli, using the T7-RNA-polymerase system. This resulted in the production of radiolabelled proteins with sizes of 45 kDa (NisC) and 32 kDa (NisI). The nisT gene product was not detected, possibly because of protein instability. The deduced amino acid sequence of NisI contained a consensus lipoprotein signal sequence, suggesting that this protein is a lipid-modified extracellular membrane-anchored protein. Expression of nisI in L. lactis provided the cells with a significant level of protection against exogenously added nisin, indicating that NisI plays a role in the immunity mechanism. In EDTA-treated E. coli cells, expression of nisI conferred up to a 170-fold increase in immunity against nisin A compared to controls. Moreover, a lactococcal strain deficient in nisin-A production, designated NZ9800, was created by gene replacement of nisA by a truncated nisA gene and was 10-fold less resistant to nisin A than the wild-type strain. A wild-type immunity level to nisin and production of nisin was obtained in strain NZ9800 harboring complementing nisA and nisZ plasmids. Transcription analyses of several L. lactis strains indicated that an expression product of the nisA gene, together with NisR, is required for the activation of nisA transcription.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Cloning, Molecular
  • DNA, Bacterial / chemistry
  • DNA-Directed RNA Polymerases / chemistry
  • Escherichia coli / drug effects
  • Escherichia coli / genetics
  • Gene Expression
  • Genes, Bacterial
  • Lactococcus lactis / drug effects
  • Lactococcus lactis / genetics*
  • Lactococcus lactis / growth & development
  • Molecular Sequence Data
  • Multigene Family*
  • Nisin / chemistry
  • Nisin / genetics*
  • Nisin / pharmacology
  • Operon*
  • Plasmids
  • RNA, Bacterial / genetics
  • Transcription, Genetic

Substances

  • DNA, Bacterial
  • RNA, Bacterial
  • Nisin
  • DNA-Directed RNA Polymerases

Associated data

  • GENBANK/L09682
  • GENBANK/L09683
  • GENBANK/L16226
  • GENBANK/L20347
  • GENBANK/L20348
  • GENBANK/X63070
  • GENBANK/X71339
  • GENBANK/X71340
  • GENBANK/X72968
  • GENBANK/X74136