The transmembrane protein of human immunodeficiency virus type 1 (HIV-1) contains a leucine zipper-like (hydrophobic heptad) repeat which has been predicted to form an amphipathic alpha helix. To evaluate the potential of the hydrophobic heptad repeat to induce protein oligomerization, this region of gp41 has been cloned into the bacterial expression vector pRIT2T. The resulting plasmid, pRIT3, expresses a fusion protein consisting of the Fc binding domain of monomeric protein A, a bacterial protein, and amino acids 538 to 593 of HIV-1 gp41. Gel filtration chromatography demonstrated the presence of oligomeric forms of the fusion protein, and analytical centrifugation studies confirmed that the chimeric protein formed a higher-order multimer that was greater than a dimer. Thus, we have identified a region of HIV-1 gp41 which is capable of directing the oligomerization of a fusion protein containing monomeric protein A. Point mutations, previously shown to inhibit the biological activity of the HIV-1 envelope glycoprotein, have been engineered into the segment of gp41 contained in the fusion protein, and expressed mutant proteins were purified and analyzed via fast protein liquid chromatography. A point mutation in the heptad repeat, which changed the central isoleucine to an alanine, caused a significant (> 60%) decrease in oligomerization, whereas changing the central isoleucine to aspartate or proline resulted in almost a complete loss of oligomerization. Deletions of one, two, or three amino acids following the first isoleucine also resulted in a profound decrease in oligomerization. The inhibitory effects of the mutations on oligomer formation correlated with the effects of the same mutations on envelope glycoprotein-mediated fusion. A possible role of the leucine zipper-like region in the fusion process and in an oligomerization event distinct from assembly of the envelope glycoprotein complex is discussed.