Gastric infection with Helicobacter pylori activates a mucosal inflammatory response by mononuclear cells and neutrophils that includes expression of cytokines interleukin-1 beta (IL-1 beta), IL-6, tumor necrosis factor alpha, and IL-8. In this study, we analyzed the IL-8 response of human gastric cancer cell lines (Kato III, AGS, and MKN28) to H. pylori infection in vitro. IL-8 mRNA expression was detected by reverse transcription-PCR amplification of RNA extracted from epithelial cells after incubation with different H. pylori wild-type and mutant strains, and IL-8 secretion was measured by an enzyme-linked immunosorbent assay. Exposure to viable H. pylori induced IL-8 mRNA and protein synthesis in all three gastric cell lines but not in nongastric epithelial cell lines. Heat-killed H. pylori and a crude cytotoxin preparation did not induce significant IL-8 secretion. IL-8 mRNA peaked between 2 and 4 h postinfection, and IL-8 protein production was maximal 24 h postinfection. Exposure of gastric carcinoma cells to other gastrointestinal bacteria, such as Pseudomonas aeruginosa, Campylobacter jejuni, and Escherichia coli, but not Campylobacter fetus, induced IL-8 synthesis. Wild-type strains that expressed the vacuolating cytotoxin (Tox+) and a cytotoxin-associated gene (cagA) product (CagA+) induced significantly more IL-8 than did CagA- Tox- strains. However, there was no decrease in IL-8 induction by isogenic mutants of CagA-, Tox-, or Cag- Tox- strains or by a mutant lacking the urease subunits. These results indicate that exposure to H. pylori and other gram-negative organisms that do not colonize the gastric mucosa induces IL-8 production by gastric carcinoma cells in vitro. Although the CagA+ Tox+ phenotype of H. pylori is associated with enhanced IL-8 production by gastric cell lines, other bacterial constituents are clearly essential.