Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules

Blood. 1995 May 15;85(10):2680-4.

Abstract

Many human leukemias are characterized by chromosomal translocations yielding hybrid RNAs capable of encoding fusion chimeric proteins. The unique amino acid sequences found in these oncogenic fusion proteins represent true tumor-specific antigens that are potentially immunogenic. Although these leukemia-specific fusion proteins have an intracellular location, they might be recognized immunologically by T lymphocytes if peptides derived from the unique sequences are capable of presentation by the major histocompatibility complex (MHC) molecules on leukemic cells. The ability of a series of synthetic peptides corresponding to the junctional sequences of chronic myelogenous leukemia (CML)-derived bcr-abl and acute promyelocytic leukemia (APL)-derived PML-RAR alpha fusion proteins to bind to purified class I molecules was studied. A series of 152 peptides 8, 9, 10, and 11 amino acids in length, spanning the b3a2 and b2a2 breakpoints for CML and PML-RAR alpha A and B breakpoints for APL were analyzed for HLA A1, A2.1, A3.2, A11, A24, B7, B8, and B27 binding motifs. Twenty-one CML peptides and 4 APL peptides were predicted to be potential HLA class I binders. The peptides were tested for binding to appropriate purified HLA molecules in a competition radioimmunoassay. Four peptides derived from b3a2 CML breakpoint bound with high (< 50 nmol/L) or intermediate (< or = 500 nmol/L) affinity to HLA A3, A11, and B8. None of the CML b2a2 or PML-RAR alpha A or B junctional peptides showed affinity of this magnitude for the HLA class I molecules tested. This is the first evidence that tumor-specific breakpoint peptides can bind human MHC class I molecules and provides a rationale for developing a therapeutic vaccine strategy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Epitope Mapping
  • Fusion Proteins, bcr-abl / chemistry
  • Fusion Proteins, bcr-abl / immunology*
  • Fusion Proteins, bcr-abl / metabolism
  • Histocompatibility Antigens Class I / metabolism*
  • Humans
  • In Vitro Techniques
  • Molecular Sequence Data
  • Neoplasm Proteins / immunology*
  • Neoplasm Proteins / metabolism
  • Nuclear Proteins*
  • Oncogene Proteins, Fusion*
  • Peptides / chemistry
  • Peptides / metabolism
  • Promyelocytic Leukemia Protein
  • Protein Binding
  • Receptors, Retinoic Acid / immunology*
  • Receptors, Retinoic Acid / metabolism
  • Recombinant Fusion Proteins / immunology*
  • Transcription Factors / immunology*
  • Transcription Factors / metabolism
  • Tumor Suppressor Proteins

Substances

  • Histocompatibility Antigens Class I
  • Neoplasm Proteins
  • Nuclear Proteins
  • Oncogene Proteins, Fusion
  • Peptides
  • Promyelocytic Leukemia Protein
  • Receptors, Retinoic Acid
  • Recombinant Fusion Proteins
  • Transcription Factors
  • Tumor Suppressor Proteins
  • promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein
  • PML protein, human
  • Fusion Proteins, bcr-abl