Nested PCR with three highly degenerate primers was used for amplification and identification of DNA polymerase (pol) genes from viruses which infect three genera of microalgae. Group-specific primers (AVS1 and AVS2) were designed on the basis of inferred amino acid sequences unique to the DNA pol genes of viruses (PBCV-1 and NY-2A) that infect an endosymbiotic Chlorella-like alga (Chlorophyceae) and a virus (MpV-SP1) which infects the photosynthetic flagellate Micromonas pusilla (Prasinophyceae). In addition, a nested primer (POL) was designed on the basis of the highly conserved amino acid sequence YGDTDS found in most B-family (alpha-like) DNA pol genes. These primers were used to amplify DNA from the three viruses, PBCV-1, NY-2A, and MpV-SP1, for which the primers were designed, as well as eight clonal isolates of genetically distinct viruses which infect M. pusilla and others which infect Chrysochromulina spp. (Prymnesiophyceae), suggesting that these are a group of related viruses. In contrast, no product resulted from using DNA from viruses which infect the marine brown algae Ectocarpus siliculosis and Feldmannia sp. (Phaeophyceae), suggesting that these viruses may not be closely related to those that infect microalgae. These primers were also used to amplify DNA from natural virus communities. Our results indicate that nested PCR, even under low-stringency conditions, can be used as a rapid method to verify the presence in seawater of a group of related viruses which infect microalgae. Sequence analysis of these fragments should provide information on the genetic diversity and potentially the phyletic relationships among these viruses.(ABSTRACT TRUNCATED AT 250 WORDS)