The purpose of this study was to determine how subjects learn to adjust the characteristics of their manual aiming movements in order to make optimal use of the visual information and reduce movement error. Subjects practised aiming (120 trials) with visual information available for either 400 msec or 600 msec. Following acquisition, they were transferred to conditions in which visual information was available for either more or less time. Over acquisition, subjects appeared to reduce target-aiming error by moving to the target area more quickly in order to make greater use of vision when in the vicinity of the target. With practice, there was also a reduction in the number of modifications in the movement. After transfer, both performance and kinematic data indicated that the time for which visual information was available was a more important predictor of aiming error than the similarity between training and transfer conditions. These findings are not consistent with a strong "specificity of learning" position. They also suggest that, if some sort of general representation or motor programme develops with practice, that representation includes rules or procedures for the utilization of visual feedback to allow for the on-line adjustment of the goal-directed movement.