c-fos is a positive regulator of carcinogen enhancement of adenovirus transformation

Oncogene. 1995 May 18;10(10):2037-49.

Abstract

The early gene expression changes mediating carcinogen enhancement of viral transformation (CET) remain to be elucidated. A model cell culture system has been developed that is now permitting a molecular analysis of CET. Pretreatment of cloned rat embryo fibroblast (CREF) cells with methyl methanesulfonate (MMS) prior to infection with the cold-sensitive host-range type 5 adenovirus mutant, H5hr1, results in a dose-dependent increase in viral transformation. The present study investigates the role of immediate-early response genes, specifically c-fos, in the CET process. MMS pretreatment, alone or in combination with infection with H5hr1 temporally and differentially increases c-fos, c-jun, jun-B, jun-D and c-myc steady-state mRNA levels. Maximum induction occurs with c-fos and c-jun 8 to 12 h posttreatment and the magnitude of response is generally greatest in CREF cells pretreated with MMS and then infected with H5hr1. Enhancement in RNA levels is observed in the presence of cycloheximide indicating that ongoing protein synthesis is not required for induction of c-fos, c-jun, jun-B or c-myc expression. Nuclear run-on analysis indicates an enhancement in transcriptional rates for c-fos, c-jun, jun-B and c-myc in CREF cells treated with MMS or MMS plus infection with H5hr1. A requirement for elevated c-fos in the early stages of CET is indicated by the ability of c-fos antisense oligonucleotides to prevent the CET process. Direct evidence implicating early increases in c-fos as a mediator of the CET process is demonstrated by stably expressing mouse mammary tumor virus promoter-regulated human sense and antisense c-fos genes in CREF cells. Induction of c-fos sense expression by dexamethasone (DEX) in the absence of MMS treatment results in enhanced c-fos mRNA, Fos protein, AP-1 DNA-binding activity and H5hr1-induced transformation and CET. Induction of c-fos expression by DEX in stable c-fos-sense CREF constructs also results in elevated levels of c-jun, jun-B and c-myc mRNA and protein. Conversely, induction of c-fos antisense expression prevents the increase in c-fos mRNA, Fos protein and AP-1 DNA-binding activity and eliminates CET. In the antisense-c-fos constructs, increases in c-jun, jun-B and c-myc mRNA and protein normally induced by MMS also are not apparent. Thus, induction or inhibition in c-fos expression affects the level of expression of additional immediate-early response genes, including c-jun, jun-B and c-myc.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae*
  • Animals
  • Base Sequence
  • Cell Line
  • Cell Transformation, Viral* / drug effects
  • Cell Transformation, Viral* / genetics
  • DNA / metabolism
  • Fibroblasts
  • Gene Expression / drug effects
  • Genes, fos / drug effects
  • Genes, fos / physiology*
  • Genes, jun / drug effects
  • Genes, jun / physiology
  • Genes, myc / drug effects
  • Genes, myc / physiology
  • Methyl Methanesulfonate / pharmacology
  • Molecular Sequence Data
  • Podophyllin / analogs & derivatives
  • Podophyllin / metabolism
  • Podophyllotoxin / analogs & derivatives
  • Proto-Oncogene Proteins c-fos / metabolism
  • Proto-Oncogene Proteins c-jun / metabolism
  • Proto-Oncogene Proteins c-myc / metabolism
  • RNA, Messenger / metabolism
  • Rats
  • Transcription Factor AP-1 / metabolism

Substances

  • Proto-Oncogene Proteins c-fos
  • Proto-Oncogene Proteins c-jun
  • Proto-Oncogene Proteins c-myc
  • RNA, Messenger
  • Transcription Factor AP-1
  • mitopodozide
  • Podophyllin
  • DNA
  • Methyl Methanesulfonate
  • Podophyllotoxin