To explore regulation and function of cyclin D2, a candidate cell cycle-regulatory proto-oncogene, we examined subcellular localisation, cell type- and cell cycle-dependent expression, and requirement of cyclin D2 protein for G1 progression, in a panel of 40 human normal and cancer cell types. Except for lymphoid cells and sarcoma cell lines, expression of cyclin D2 was considerably more restricted than that of cyclin D1, whereas both D-type cyclin proteins were low or undetectable in cells lacking functional retinoblastoma gene product. In G1 cells, the cyclin D2 protein was more resistant to extraction and localised predominantly to nuclei, whereas it became more soluble and distributed in both nuclei and cytoplasm from G1/S transition onwards. Centrifugal elutriation and multiparameter flow cytometry analyses of several cell types showed moderate cell cycle oscillation with maximum levels of the cyclin D2 protein reached in late G1. Microinjection and/or electroporation of antibodies to cyclin D2 during G1 arrested the cyclin D2-expressing lymphocytes, breast myoepithelium, and U-2-OS sarcoma cells in G1 phase, whereas cyclin D2-negative cell types were unaffected by such treatment. Consistent with the putative proto-oncogenic role of cyclin D2 in specific cell types, our data show that this G1 cyclin has properties closely resembling those of cyclin D1, including the essential positive role in regulation of G1.