A novel cis-acting element required for lipopolysaccharide-induced transcription of the murine interleukin-1 beta gene

Mol Cell Biol. 1995 Jan;15(1):112-9. doi: 10.1128/MCB.15.1.112.

Abstract

Regulatory elements important for transcription of the murine interleukin-1 beta (IL-1 beta) gene lie within a DNase I-hypersensitive region located > 2,000 bp upstream from the transcription start site. We have identified within this region a novel positive regulatory element that is required for activation of an IL-1 beta promoter-chloramphenicol acetyltransferase (CAT) fusion gene in the murine macrophage line RAW264.7. Electrophoretic mobility shift analysis of the 3' portion (-2315 to -2106) of the hypersensitive region revealed at least two nuclear factor binding sites, one of which is located between positions -2285 and -2256. Competitive inhibition studies localized the binding site to a 15-bp sequence between -2285 and -2271. Nuclear factor binding was lost by mutation of the 6-bp sequence from -2280 to -2275. The specific retarded complex formed with RAW264.7 nuclear extract was not detected under similar conditions with nuclear extracts from RLM-11, a murine T-cell line which does not express IL-1 beta RNA. Mutation of the 6-bp sequence (-2280 to -2275) in the chimeric IL-1 beta promoter -4093 +I CAT plasmid virtually eliminated the activation of this reporter gene by lipopolysaccharide (LPS) in transfected RAW264.7 cells. Multimerization of the 15-bp sequence containing the core wild-type 6-bp sequence 5' of minimal homologous or heterologous promoters in CAT reporter plasmids resulted in significant enhancement of CAT expression compared with parallel constructs containing the mutant 6-bp core sequence. This element was LPS independent and position and orientation dependent. The multimerized 15-bp sequence did not enhance expression in RLM-11 cells. Methylation interference revealed contact residues from -2281 to -2271, CCAAAAAGGAA. Because a search of the NIH TFD data bank with the 11-bp binding site sequence found no homology to known nuclear factor binding sites, we have designated this sequence the IL1 beta -upstream nuclear factor 1 (IL1 beta -UNF1) target. UV cross-linking and sodium dodecyl sulfate-polyacrylamide electrophoresis identified an IL1 beta -UNF1-specific binding factor approximately 85 to 90 kDa in size.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • DNA Primers / chemistry
  • DNA-Binding Proteins / metabolism
  • Gene Expression Regulation / drug effects
  • Interleukin-1 / genetics*
  • Lipopolysaccharides / pharmacology
  • Mice
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Nuclear Proteins / metabolism
  • Promoter Regions, Genetic*
  • RNA, Messenger / genetics
  • Structure-Activity Relationship
  • Transcription, Genetic / drug effects

Substances

  • DNA Primers
  • DNA-Binding Proteins
  • Interleukin-1
  • Lipopolysaccharides
  • Nuclear Proteins
  • RNA, Messenger