When deprived of autocrine growth factors, Epstein-Barr virus (EBV)-immortalized B cells stop growing and die. In this study, we show that death of EBV-immortalized cells deprived of autocrine growth factors occurred by apoptosis. Cycloheximide, a protein synthesis inhibitor, inhibited apoptosis, suggesting that de novo protein synthesis is required. Because p53, Bcl-2, and c-Myc were previously implicated in the induction or prevention of apoptosis in other systems, we assessed their possible involvement here. Unlike normal cells that respond to growth factor deprivation by down-regulating c-Myc expression, EBV-immortalized cells continued to express c-Myc, p53, and Bcl-2 at levels comparable to those measured prior to starvation. Consistent with data demonstrating that c-Myc expression is sufficient to drive quiescent cells into the cell cycle, autocrine growth factor-deprived EBV-immortalized cells did not undergo growth arrest but rather continued to proliferate until death, which occurred randomly throughout the cell cycle. In contrast to EBV-immortalized B cells, normal peripheral blood B cells activated in vitro with anti-CD40 monoclonal antibody and interleukin 4 rapidly down-regulated c-Myc expression and underwent growth arrest in response to growth factors and serum deprivation. These findings demonstrated that c-Myc expression is deregulated in EBV-immortalized cells. Addition of antisense oligonucleotides to c-Myc specifically promoted the survival of starved EBV-immortalized cells and suppressed growth of nonstarved EBV-immortalized cells. Thus, deregulated expression of c-Myc in EBV-immortalized cells promotes proliferation and apoptosis following autocrine growth factor deprivation.