Beta-adrenergic receptor kinase (beta ARK) is a serine-threonine kinase involved in the process of homologous desensitization of G-coupled receptors. beta ARK is a member of a multigene family, consisting of six known subtypes, also named G protein-coupled receptor kinases (GRK 1-6). In this study we investigated the expression of GRKs during the process of T cell activation, which is of fundamental importance in regulating immune responses. T cell activation was induced by exposing mononuclear leukocytes (MNL) to PHA and confirmed by tritiated thymidine incorporation measurement. A substantial increase of GRK activity (as measured by in vitro phosphorylation of rhodopsin) was found after 48 h (331 +/- 80% of controls) and 72 h (347 +/- 86% of controls) of exposure to PHA. A threefold increase of beta ARK1 immunoreactivity was found in MNL exposed to PHA for 72 h. Persistent activation of protein kinase C (PKC) by 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) was able to increase beta ARK activity to the same extent as PHA, suggesting a PKC-mediated mechanism. The kinetic of beta-adrenergic-stimulated cAMP production was substantially modified in TPA and PHA-activated cells, indicating that the increased GRK activity resulted in an increased beta-adrenergic homologous desensitization. A three- to fourfold increase in GRK activity was also observed in a population of T cell blasts (> 97% CD3+) exposed to PHA for 48-72 h. A significant increase in beta ARK1 and beta ARK2 mRNA expression was observed 48 h after mitogen stimulation, while mRNA expression of GRK5 and GRK6 was not changed. In conclusion our data show that the expression of GRK subtypes is actively and selectively modulated according to the functional state of T lymphocytes.