Autoradiographic experiments using iodinated vasopressin analog revealed the presence of specific vasopressin-binding sites in the human adrenal cortex (zona glomerulosa and zona fasciculata). These receptors exhibited a good affinity for arginine vasopressin (3.3 nM), with classical V1a pharmacology and densities of 65 and 135 fmol/mg protein-enriched membranes from zona glomerulosa and fasciculata, respectively. Vasopressin receptors present in both glomerulosa and fasciculata cell-enriched primary cultures were coupled to phospholipase C (ED50, 0.9 and 1.8 nM; maximal stimulation, 4.3- and 5.8-fold, respectively). Vasopressin also stimulated an increase in intracellular calcium through at least two distinct mechanisms: the mobilization of intracellular pools via vasopressin-stimulated inositol phosphate accumulation and the activation of calcium influx. In glomerulosa cell-enriched primary cultures, vasopressin increased aldosterone secretion (ED50, 0.4 nM; maximal stimulation, 2.5-fold) and was found to be as potent as angiotensin-II in stimulating aldosterone secretion, phosphoinositide turnover, and calcium mobilization. In fasciculata cells, vasopressin and angiotensin-II were also able to stimulate cortisol secretion and inositol phosphate accumulation. Moreover, perifusion experiments demonstrated that vasopressin was released from the adrenal medulla. Together, these results indicate that vasopressin can be considered a potent paracrine modulator of adrenal steroid secretion in man.