Porphyromonas gingivalis contains high concentrations of numerous cysteine proteinases with trypsin-like activity which have been implicated as important virulence factors in adult-onset periodontitis. We have analyzed the subfractions of six P. gingivalis strains for the presence of arginine-X- and lysine-X-specific proteinases (Arg-gingipain [RGP] and Lys-gingipain [KGP]) previously purified from P. gingivalis H66. Western blot (immunoblot) analysis using antibodies produced against RGP and the N-terminal peptides of RGP or the catalytic subunit of KGP indicated that these enzymes are synthesized by the strains studied and exist as multiple molecular mass species. The major forms of RGP were identified as 110-, 95-, 70- to 90-, and 50-kDa proteins, the first two being a complex of the 50-kDa catalytic subunit with hemagglutinins, with or without an added membrane anchorage peptide. The other forms are single-chain enzymes. While the 95- and 50-kDa RGP were found predominantly in culture medium, the 110- and 70- to 90-kDa forms associated with membranous fractions of the bacteria. The predominant form of KGP in all strains was a complex of the 60-kDa catalytic domain with hemagglutinins, and vesicle- and membrane-associated KGP was about 15 kDa larger than the 105-kDa enzyme present in culture media. These data explain the apparent complexity of P. gingivalis proteinases and indicate that in all strains tested there are two identical enzymes, one with arginine-X specificity and the other with lysine-X specificity, which, working in concert, are responsible for the trypsin-like activity associated with this bacterium.