Background/aims: Hyperbilirubinemia associated with sepsis is frequently observed in humans. In this study, an experimental rat model was developed to study bilirubin metabolism and transport during endotoxemia.
Methods: Rats were injected intravenously with a single bolus of lipopolysaccharide (1 mg/kg); after 18 hours, the liver was removed for single-pass perfusion. Unconjugated bilirubin, bilirubin ditaurate (125 nmol/min), and/or taurocholate (1.5 mumol/min) were infused. Rate constants for uptake were determined from the disappearance of a bolus of bilirubin ditaurate in a recirculating perfusion.
Results: In endotoxemic livers, biliary excretion of bilirubin-glucuronides was reduced by 49% (2.04 +/- 0.2 and 3.99 +/- 0.24 nmol.min-1.g liver-1). Similar results were obtained with bilirubin ditaurate, indicating that the reduced transport is not caused by a reduced conjugation capacity. The rate constant of sinusoidal uptake was significantly reduced during endotoxemia (0.191 +/- 0.034 vs. 0.090 +/- 0.035, respectively). Secretion of taurocholate into bile was also reduced (92 +/- 22 vs. 127 +/- 10 nmol.min-1.g liver-1).
Conclusions: In endotoxemic rats, biliary clearance of bilirubin and taurocholate is substantially decreased, suggesting that decreased output of bilirubin-glucuronides is not caused by impaired conjugation but by a reduction in transport.