Glutathione (GSH) is an antioxidant that protects the lung against oxidative-injury. Most cells rely on synthesis of GSH to maintain intracellular supply and only a few cell types take up intact GSH. Although isolated type II cells from rat have a Na(+)-dependent uptake system that transports GSH into the cells against a concentration gradient, it is not known whether this occurs from the vasculature in the intact lung or whether other cell types in the lung also transport GSH. Based on the knowledge that gamma-glutamyl analogues of GSH are also transported by the Na(+)-GSH transporter, a method was developed and used to study the cell specificity of GSH uptake in perfused lung. A stable, fluorescent GSH S-conjugate (GSH-I14) was synthesized and separated from the original dye as analyzed by high-performance liquid chromatography. Studies with isolated alveolar type II cells showed that uptake of GSH-I14 was Na+ dependent and inhibited by GSH. In addition, uptake of GSH by the type II cells was inhibited by GSH-I14. After perfusion of the isolated rat lung with GSH-I14, the conjugate accumulated primarily in the alveolar type II cell as observed by fluorescence microscopy. This was confirmed by isolation of type II cells and measurement of GSH-I14 content. Thus these results show that specificity of GSH transport can be studied with the fluorescent derivative, GSH-I14, and that in the isolated perfused lung type II cells can transport and concentrate GSH-I14 from the perfusate. Quantitative fluorescence microscopy will be required to further determine relative transport activities by other cell types.