MEK, a dual specificity threonine/tyrosine kinase, has been postulated to be a convergent point for signaling from receptor protein tyrosine kinases (RTKs) and G-protein-coupled receptors. In contrast to yeast and mammalian cells where several MEKs have been isolated, only one Drosophila MEK (D-Mek) has been characterized to date. Previous studies have shown that D-Mek acts in the Torso RTK signaling pathway. To demonstrate that D-Mek also operates downstream of other RTKs, we generated a temperature-sensitive allele of D-mek (D-mekts) by site-directed mutagenesis based on the amino acid change of a yeast cdc2ts mutation. Using D-mekts, we show that in addition to its role in Torso signaling, D-Mek operates in the Sevenless and in the Drosophila epidermal growth factor RTK pathways. Because loss-of-function mutations in D-mek and the upstream receptors give rise to similar phenotypes, it suggests that D-mek is the only MEK activated by Drosophila RTKs. In addition, we demonstrate that different RTK pathways respond differently to alteration in D-Mek activity.