Mutational analysis of the autoinhibitory domain of calmodulin kinase II

J Biol Chem. 1994 Nov 18;269(46):29047-54.

Abstract

Calmodulin (CaM)-kinase II is inactive in the absence of Ca2+/CaM due to interaction of its autoinhibitory domain with its catalytic domain. Previous studies using synthetic autoinhibitory domain peptides (residues 281-302) identified several residues as important for inhibitory potency and suggested that His282 may interact with the ATP-binding motif of the catalytic domain. To further examine the autoinhibitory domain, site-specific mutants were expressed using the baculovirus/Sf9 cell system. The purified mutants had many biochemical properties identical to wild-type kinase, but mutants H282Q, H282R, R283E, and T286D had 10-20% constitutive Ca(2+)-independent activities, indicating that these residues are involved in the autoinhibitory interaction. The Ca(2+)-independent activities of the H282Q, H282R, and R283E mutants exhibited 10-fold lower Km values for ATP than the wild-type kinase. Wild-type and mutant kinases, except T286A and T286D, generated Ca2+ independence upon autophosphorylation in the presence of Ca2+/CaM, and those mutants having constitutive Ca2+ independence also exhibited enhanced Ca2+/CaM-independent autophosphorylation. This Ca(2+)-independent autophosphorylation resulted in a decrease in total kinase activity, but there was little increase in Ca(2+)-independent activity, consistent with autophosphorylation of predominantly Thr306 rather than Thr286. These results are consistent with an inhibitory interaction of His282 and possibly Arg283 with the ATP-binding motif of the catalytic domain, and they indicate that constitutively active CaM-kinase II cannot autophosphorylate on Thr286 in the absence of bound Ca2+/CaM. Based on these and other biochemical characterizations, we propose a molecular model for the interaction of a bisubstrate autoinhibitory domain with the catalytic domain of CaM-kinase II.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Baculoviridae / genetics
  • Base Sequence
  • Calcium / metabolism
  • Calcium-Calmodulin-Dependent Protein Kinases / antagonists & inhibitors*
  • Calcium-Calmodulin-Dependent Protein Kinases / genetics
  • Cell Line
  • Kinetics
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Oligodeoxyribonucleotides
  • Phosphorylation
  • Spodoptera

Substances

  • Oligodeoxyribonucleotides
  • Adenosine Triphosphate
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Calcium