The receptor for macrophage colony stimulating factor (CSF-1), the c-fms gene product, is a key determinant in the differentiation of monocytic phagocytes. Dissection of the human and mouse c-fms proximal promoters revealed opposing roles for nuclear protooncogenes in the transcriptional regulation of this gene. On the one hand, c-ets-1, c-ets-2, and the macrophage-specific factor PU.1, but not the ets-factor PEA3, trans-activated the c-fms proximal promoter. On the other hand c-myb repressed proximal promoter activity in macrophages and blocked the action of c-ets-1 and c-ets-2. Basal c-fms promoter activity was almost undetectable in the M1 leukaemia line, which expressed high levels of c-myb, but was activated as cells differentiated in response to leukemia inhibitory factor and expressed c-fms mRNA. The repressor function of c-myb depended on the COOH-terminal domain of the protein. We propose that ets-factors are necessary for the tissue-restricted expression of c-fms and that c-myb acts to ensure correct temporal expression of c-fms during myeloid differentiation.