In this paper we report that, compared with term rat neonates, both mitochondrial content and function are diminished in liver of preterm neonates (delivered 24 h before full term) compromising cellular energy provision in the postnatal period. In addition, there is a parallel reduction in the content of mRNAs encoding mitochondrial proteins in preterm rats. Also, efficient oxidative phosphorylation is not attained in these pups until 3 h after birth. Although isolated liver mitochondria from preterm neonates show a two-fold increase in F1-ATPase beta-subunit and cytochrome c oxidase activity 1 h after birth, the abnormal coupling efficiency between respiration and oxidative phosphorylation (ADP/O ratio) is due to maintenance of high H(+)-leakage values in the inner mitochondrial membrane. Postnatal reduction of the H+ leak occurs concomitantly with an increase in intra-mitochondrial adenine nucleotide concentration. Accumulation of adenine nucleotides in preterm and term liver mitochondria parallels the postnatal increase in total liver adenine nucleotides. Delayed postnatal induction of adenine biosynthesis most likely accounts for the lower adenine nucleotide pool in the liver of preterm neonates. The delayed postnatal accumulation of adenine nucleotides in mitochondria is thus responsible for the impairment in oxidative phosphorylation displayed by organelles of the preterm liver.