High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims

J Pharmacol Exp Ther. 1994 Dec;271(3):1678-85.

Abstract

Cocaine mediates its powerful reinforcement by binding to recognition sites on the dopamine (DA) transporter. The pharmacological identity of cocaine recognition sites and their relevance to dopamine transport function has remained unclear. Ligand binding studies with transport inhibitors and cocaine congeners have provided evidence for multiple sites or "states" of the DA transporter. The potent cocaine congener [3H]WIN 35,428 ((CFT), 2B-carbomethoxy-3 beta-(4-fluorophenyl)-tropane) has been shown to recognize high and low affinity binding sites on the DA transporter. We have used [3H]WIN 35,428 to map and quantify the high affinity cocaine recognition site on the DA transporter in victims of fatal cocaine overdose. Region-of-interest densitometric analysis of the autoradiograms demonstrated a 2- to 3-fold elevation in the apparent density of [3H]WIN 35,428 binding in particular sectors of the striatum from victims of cocaine overdose as compared to age-matched and drug-free control subjects. The most marked increase in [3H]WIN 35,428 binding was seen in the nucleus accumbens. The apparent increase in the density of high affinity sites was confirmed by saturation binding analysis of [3H]WIN 35,428 to putamen membranes. Saturation analysis revealed high and low affinity binding components with affinities (KD values) of 4.3 +/- 1.2 and 84.7 +/- 19.7 nM (mean +/- S.E.) and densities of 9.9 +/- 4.0 and 193.0 +/- 28.6 pmol/g of tissue, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Binding Sites
  • Brain / metabolism
  • Carrier Proteins / chemistry
  • Carrier Proteins / metabolism*
  • Cocaine / analogs & derivatives*
  • Cocaine / metabolism*
  • Cocaine / poisoning*
  • Dopamine / metabolism*
  • Dopamine Plasma Membrane Transport Proteins
  • Drug Overdose
  • Female
  • Humans
  • Male
  • Membrane Glycoproteins*
  • Membrane Transport Proteins*
  • Nerve Tissue Proteins*

Substances

  • Carrier Proteins
  • Dopamine Plasma Membrane Transport Proteins
  • Membrane Glycoproteins
  • Membrane Transport Proteins
  • Nerve Tissue Proteins
  • (1R-(exo,exo))-3-(4-fluorophenyl)-8-methyl-8- azabicyclo(3.2.1)octane-2-carboxylic acid, methyl ester
  • Cocaine
  • Dopamine