Hirudin is the most potent and specific inhibitor of the blood-clotting enzyme thrombin so far known. Several hirudin variants were isolated mostly from Hirudo medicinalis and shown to be polypeptide chains of approximately 7 kDa with three internal disulfide bridges. In this study, limited proteolysis has been used to probe aspects of the structure and dynamics of a hirudin variant HM2 isolated from Hirudinaria manillensis. Proteolysis of the polypeptide chain of 64-amino-acid residues of hirudin HM2 by protease from Staphylococcus aureus V8, trypsin, thermolysin and subtilisin occurs at region 41-49 of the chain. The N-terminal fragments 1-41 and 1-47 were isolated to homogeneity and shown to maintain inhibitory action on thrombin, though much lower than the intact protein. The results were interpreted on the basis of a proposed three-dimensional structure of hirudin HM2 deduced by protein modelling the known structure of hirudin variant HV1 from Hirudo medicinalis (75% sequence similarity between HM2 and HV1). Both proteolysis experiments and protein modelling provide evidence for the existence in hirudin HM2 of a N-terminal well-structured domain (core) and a C-terminal flexible polypeptide segment. Determination of the accessible surface area of the three-dimensional model of hirudin HM2 showed that the sites of preferential cleavages are at the surface of the polypeptide molecule.