We used a dual immunomorphological and physiological approach to demonstrate that the RC.SVtsA58 rabbit cortical cell line exhibits features of highly differentiated cortical collecting tubule (CCT) principal cells (PC). First, we raised monoclonal antibodies against RC.SVtsA58 cells and screened their reactivity with the rabbit kidney: three were specific for the basolateral domain of CCT PC and bound to 100% of RC.SVtsA58 cells. Second, we showed that bradykinin, atrial natriuretic peptide, and prostaglandin E2 increased intracellular Ca2+, guanosine 3',5'-cyclic monophosphate, and adenosine 3',5'-cyclic monophosphate (cAMP), respectively. In addition, 10 nM bradykinin inhibited desmopressin-elicited cAMP production by > or = 40%; this effect was suppressed by 10 microM of indomethacin and was reproduced with 1 nM of prostaglandin E2, indicating the conservation of arginine vasopressin-related regulatory loops described in microdissected CCT and freshly isolated cells. However, RC.SVtsA58 cells also express intercalated cell markers even after repeated cloning, which suggests that tsA58, a temperature-sensitive strain of simian virus-40, has transformed a multipotent type of PC in keeping with the cell interconversion hypothesis.