Alginate-poly-l-lysine-alginate (APA) microcapsules have proven effective in protecting enclosed live cells from immune rejection following transplantation into experimental animals, thereby eliminating the need for immunosuppressive therapy. However, in order for the capsules to remain intact for extended periods in vivo, the thickness of the membrane material must be optimized. In this study, the membrane thickness was examined as an indicator of membrane strength and measured under different reaction conditions. The thickness was found to increase 1) from 4.6 microns to 6.6 microns with an increase in the concentration of sodium alginate from 1.25 (w/v) to 2.0% (w.v); 2) from 4.2 microns to 6.2 microns with an increase in the concentration of the calcium solution from 20 mM to 100mM; 3) from 3.9 microns to 10.3 microns with an increase in the concentration of poly-l-lysine (PLL) from 0.02% (w/v) to 0.08% (w/v); and 4) from 2.3 microns to 7.4 microns with an increase in the reaction time with the PLL from two to seven minutes. On the other hand, membrane thickness decreased 1) from 9.8 microns to 8.6 microns with an increase of the pH in the PLL solution from 5.8 to 9.2; 2) from 13.2m to 5.8 microns with an increase in the molecular weight of PLL from 14,000 to 57,000; 3) from 8.4 microns to 6.0 microns with an increase in the treatment time with 0.9 (w/v) NaCl solution from zero to fifteen minutes and; 4) from 7.5 microns to 6.1 microns with an increase in the treatment time of the second sodium alginate coating from zero to ten minutes. Membrane thickness was inversely proportional to capsule volume expansion during membrane synthesis. By replacing calcium chloride by calcium lactate and eliminating the use of CHES in the construction of capsule membranes, we improved the strength and biocompatibility of our capsules, as evidenced by marked improvements in the survival rates of diabetic mice treated with islet transplants enclosed in the new capsules. These results indicate that it is possible to obtain optimal membrane thickness for a given purpose by creating specific reaction conditions under which membranes are synthesized.