Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate AP-1 activity

Mol Cell Biol. 1994 Sep;14(9):6244-52. doi: 10.1128/mcb.14.9.6244-6252.1994.

Abstract

The simian virus 40 small tumor antigen (small t) specifically interacts with protein phosphatase type 2A (PP2A) in vivo and alters its catalytic activity in vitro. Among the substrates for PP2A in vitro are the activated forms of MEK and ERK kinases. Dephosphorylation of the activating phosphorylation sites on MEK and ERKs by PP2A in vitro results in a decrease in their respective kinase activities. Recently, it has been shown that overexpression of small t in CV-1 cells results in an inhibition of PP2A activity toward MEK and ERK2 and a constitutive upregulation of MEK and ERK2 activity. Previously, we have observed that overexpression of either ERK1, MEK1, or a constitutively active truncated form of c-Raf-1 (BXB) is insufficient to activate AP-1 in REF52 fibroblasts. We therefore examined whether overexpression of small t either alone or in conjunction with ERK1, MEK1, or BXB could activate AP-1. We found that coexpression of small t and either ERK1, MEK1, or BXB resulted in an increase in AP-1 activity, whereas expression of either small t or any of the kinases alone did not have any effect. Similarly, coexpression of small t and ERK1 activated serum response element-regulated promoters. Coexpression of kinase-deficient mutants of ERK1 and ERK2 inhibited the activation of AP-1 caused by expression of small t and either MEK1 or BXB. Coexpression of an interfering MEK, which inhibited AP-1 activation by small t and BXB, did not inhibit the activation of AP-1 caused by small t and ERK1. In contrast to REF52 cells, we observed that overexpression of either small or ERK1 alone in CV-1 cells was sufficient to stimulate AP-1 activity and that this stimulation was not enhanced by expression of small t and ERK1 together. These results show that the effects of small t on immediate-early gene expression depend on the cell type examined and suggest that the mitogen-activated protein kinase activation pathway is distinctly regulated in different cell types.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, Polyomavirus Transforming / physiology*
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Cell Line
  • Gene Expression Regulation
  • In Vitro Techniques
  • MAP Kinase Kinase 1
  • Macromolecular Substances
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinase Kinases*
  • Mitogen-Activated Protein Kinases*
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein-Tyrosine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-jun / physiology*
  • Proto-Oncogene Proteins c-raf
  • Rats
  • Recombinant Proteins
  • Signal Transduction
  • Transcription, Genetic*
  • Transfection

Substances

  • Antigens, Polyomavirus Transforming
  • Macromolecular Substances
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-jun
  • Recombinant Proteins
  • Protein-Tyrosine Kinases
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-raf
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase 1
  • Mitogen-Activated Protein Kinase Kinases