The conventional gradient-recalled echo technique, FLASH, has widely been used for functional MRI. FLASH results at 4 T with short TEs of 10-20 ms mimic those at 1.5 T with TEs of 25-50 ms or longer. Under these conditions, large venous vessels dominate the activated area; however, the use of longer TEs at 4 T reveals activation in gray matter areas as well as large vessels. Inflow effects of large vessels can be greatly reduced with centric-reordering of phase-encoding steps and inter-image delay. Finger and toe movement paradigms show that functional activation maps are consistent with classical somatotopic maps, and are specific to the tasks. Navigator-based motion correction generates functional maps with larger activation areas by reducing physiological noise.