Auto- and cross-induction within the mammalian epidermal growth factor-related peptide family

J Biol Chem. 1994 Sep 9;269(36):22817-22.

Abstract

Several polypeptide growth factors related to epidermal growth factor (EGF) have been identified recently, including transforming growth factor-alpha (TGF-alpha), amphiregulin (AR), heparin-binding EGF-like growth factor (HB-EGF), and betacellulin (BTC). These peptides all bind to the EGF receptor (EGFr). In an effort to understand redundancy within this peptide family and interactions among these related peptides, we compared the biological activities of EGF, TGF-alpha, AR, and HB-EGF in an EGF-responsive, nontransformed intestinal epithelial line (RIE-1) and also determined the effect of individual EGF-related peptides on the expression of related family members in these cells. TGF-alpha, AR, HB-EGF, and EGF were equipotent in stimulating [3H]thymidine incorporation by RIE-1 cells and bound the EGFr with equivalent affinity. Each EGF-related peptide induced the mRNA expression of the remaining family members, including BTC. HB-EGF and AR mRNAs were induced rapidly (within 30 min) and to a greater extent than TGF-alpha and BTC mRNAs, suggesting heterogeneity in the molecular mechanisms for induction. This same pattern was observed for all EGF-related peptides tested. A similar pattern of mRNA induction was observed in secondary cultures of human keratinocytes and in LIM1215 colon adenocarcinoma cells. Nuclear run-on analysis showed that induction of AR and HB-EGF is, at least in part, regulated at the level of gene transcription. Concurrent treatment with HB-EGF and cycloheximide resulted in superinduction of HB-EGF and AR, suggesting that these peptides are immediate early genes in RIE-1 cells. Our results demonstrate an equivalent biological response to EGF-related peptides in RIE-1 cells and further indicate that extensive auto-induction and cross-induction occur within the EGF-related peptide family in several EGF-responsive epithelial cell types.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amphiregulin
  • Animals
  • Betacellulin
  • Cell Division / drug effects
  • Cell Line
  • DNA / biosynthesis*
  • DNA / drug effects
  • EGF Family of Proteins
  • Epidermal Growth Factor / biosynthesis*
  • Epidermal Growth Factor / pharmacology*
  • Epithelial Cells
  • Epithelium / drug effects
  • Epithelium / metabolism
  • ErbB Receptors / metabolism*
  • Gene Expression / drug effects
  • Gene Expression / physiology*
  • Glycoproteins / pharmacology
  • Growth Substances / pharmacology*
  • Heparin-binding EGF-like Growth Factor
  • Intercellular Signaling Peptides and Proteins*
  • Intestine, Small
  • Kinetics
  • Rats
  • Structure-Activity Relationship
  • Thymidine / metabolism
  • Transforming Growth Factor alpha / pharmacology

Substances

  • AREG protein, human
  • Amphiregulin
  • Areg protein, rat
  • BTC protein, human
  • Betacellulin
  • Btc protein, rat
  • EGF Family of Proteins
  • Glycoproteins
  • Growth Substances
  • HBEGF protein, human
  • Hbegf protein, rat
  • Heparin-binding EGF-like Growth Factor
  • Intercellular Signaling Peptides and Proteins
  • Transforming Growth Factor alpha
  • Epidermal Growth Factor
  • DNA
  • ErbB Receptors
  • Thymidine