Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci

Mol Biol Evol. 1994 Jul;11(4):553-70. doi: 10.1093/oxfordjournals.molbev.a040137.

Abstract

Genetic divergence and gene flow among closely related populations are difficult to measure because mutation rates of most nuclear loci are so low that new mutations have not had sufficient time to appear and become fixed. Microsatellite loci are repeat arrays of simple sequences that have high mutation rates and are abundant in the eukaryotic genome. Large population samples can be screened for variation by using the polymerase chain reaction and polyacrylamide gel electrophoresis to separate alleles. We analyzed 10 microsatellite loci to quantify genetic differentiation and hybridization in three species of North American wolflike canids. We expected to find a pattern of genetic differentiation by distance to exist among wolflike canid populations, because of the finite dispersal distances of individuals. Moreover, we predicted that, because wolflike canids are highly mobile, hybrid zones may be more extensive and show substantial changes in allele frequency, relative to nonhybridizing populations. We demonstrate that wolves and coyotes do not show a pattern of genetic differentiation by distance. Genetic subdivision in coyotes, as measured by theta and Gst, is not significantly different from zero, reflecting persistent gene flow among newly established populations. However, gray wolves show significant subdivision that may be either due to drift in past Ice Age refugia populations or a result of other causes. Finally, in areas where gray wolves and coyotes hybridize, allele frequencies of gray wolves are affected, but those of coyotes are not. Past hybridization between the two species in the south-central United States may account for the origin of the red wolf.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alleles
  • Animals
  • Canada
  • Carnivora / classification
  • Carnivora / genetics*
  • Computer Simulation
  • DNA, Satellite / genetics*
  • Gene Frequency
  • Genetics, Population
  • Hybridization, Genetic
  • Kenya
  • Monte Carlo Method
  • United States

Substances

  • DNA, Satellite