Serotonin (5-HT) is a major neurotransmitter that influences various behaviors, neuronal plasticity, learning, and memory in molluscs. Although the physiology of 5-HT transmission in molluscs is well studied, little is known about the pharmacology and diversity of the 5-HT receptor system. Based on the high homology of genes coding for guanine nucleotide-binding protein (G protein)-coupled receptors, we have cloned a gene for the Lymnaea stagnalis 5-HT (5HTlym) receptor. The putative receptor protein, 509 amino acids long, has highest homology with the Drosophila 5-HT receptors and mammalian 5HT1 receptors. As revealed by RNA blot-hybridization analysis, two mRNA species of 2.3 and 3.2 kb are detected in the central nervous system of Lymnaea. Transient expression of 5HTlym in COS-7 cells showed saturable [3H]lysergic acid diethylamide binding with an estimated dissociation constant of 0.9 nM. The 5HTlym receptor exhibited a mixed 5HT-like pharmacology that cannot be precisely categorized with existing mammalian classification nomenclature. However, the 5HTlym receptor does display some characteristics that have been attributed to the putative mammalian vascular 5HT1-like receptor.