Transmembrane glucose transport plays a key role in determining insulin sensitivity. We have measured in vivo WBGU, FGU, and K(in) and K(out) of 3-O-methyl-D-glucose in forearm skeletal muscle by combining the euglycemic clamp technique, the forearm-balance technique, and a novel dual-tracer (1-[3H]-L-glucose and 3-O-[14C]-methyl-D-glucose) technique for measuring in vivo transmembrane transport. Twenty-seven healthy, lean subjects were studied. During saline infusion, insulin concentration, FGU (n = 6), K(in), and K(out) (n = 4) were similar to baseline. During SRIF-induced hypoinsulinemia (insulin < 15 pM, n = 4) WBGU was close to 0, and FGU, K(in), and K(out) were unchanged from basal (insulin = 48 pM) values. During insulin clamps at plasma insulin levels of approximately 180 (n = 4), approximately 420 (n = 5), approximately 3000 (n = 4), and approximately 9500 pM (n = 4), WBGU was 14.2 +/- 1.3, 34.2 +/- 4.1 (P < 0.05 vs. previous step), 55.8 +/- 1.8 (P < 0.05 vs. previous step), and 56.1 +/- 6.3 mumol.min-1.kg-1 of body weight (NS vs. previous step), respectively. Graded hyperinsulinemia concomitantly increased FGU from a basal value of 4.7 +/- 0.5 mumol.min-1.kg-1 up to 10.9 +/- 2.3 (P < 0.05 vs. basal value), 26.6 +/- 4.5 (P < 0.05 vs. previous step), 54.8 +/- 4.3 (P < 0.05 vs. previous step), and 61.1 +/- 10.8 mumol.min-1.kg-1 of forearm tissues (NS vs. previous step), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)