Delta-1 opioid agonist acutely increases hypoxic tolerance

J Pharmacol Exp Ther. 1994 Feb;268(2):683-8.

Abstract

Severe, intermittent hypoxia (hypoxic conditioning) induces an acute adaptation such that survival time during a subsequent hypoxic challenge is increased. The opioid antagonist, naloxone, and the delta-selective antagonists, naltrindole and 7-benzylide-nenaltrexone (BNTX), block this adaptation. The current study continued the pharmacological characterization of this acute adaptation to hypoxia by using selective opioid agonists. [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (1 mg/kg s.c.), U50488H [trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] benzeacetamide methane sulfonate]; 30 mg/kg s.c.] and [D-Pen2,D-Pen5]-enkephalin (DPDPE; 100 mg/kg s.c.) further augmented the hypoxic conditioning induced increase in survival time. DPDPE (56.1 mg/kg of peptide i.v.) increased survival time of naive mice independently of hypoxic conditioning and decreased body temperature. The DPDPE-induced increase in survival time was blocked by the delta-1-selective antagonist, BNTX (0.6 mg/kg s.c.), but not by the delta-2-selective antagonist, naltrindole (10 mg/kg s.c.). However, the DPDPE-induced decrease in body temperature was not blocked by either BNTX or naltrindole. These results supported our hypothesis that the mechanism of acute hypoxic adaptation involves an endogenous delta-1 opioid pathway and demonstrated that activation of a delta-1 receptor mimicked acute hypoxic adaptation induced by intermittent hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
  • Adaptation, Physiological
  • Animals
  • Benzylidene Compounds / pharmacology
  • Body Temperature / drug effects
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Enkephalin, D-Penicillamine (2,5)-
  • Enkephalins / pharmacology
  • Hypoxia / physiopathology*
  • Male
  • Mice
  • Naltrexone / analogs & derivatives
  • Naltrexone / pharmacology
  • Pyrrolidines / pharmacology
  • Receptors, Opioid, delta / physiology*

Substances

  • Benzylidene Compounds
  • Enkephalins
  • Pyrrolidines
  • Receptors, Opioid, delta
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • 7-benzylidenenaltrexone
  • Naltrexone
  • 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
  • Enkephalin, D-Penicillamine (2,5)-