Since the elucidation of the structures of the three human PRHrP isoforms in 1987, information has rapidly accured which indicates that the role of PTHrP in normal physiology will prove to be crucial as well as exceedingly complex. The importance of the role of PTHrP in normal physiology is underscored by its broad tissue expression, by its intense evolutionary conservation, by its extremely early expression after fertilization of the ovum, and by the lethal consequences of PTHrP gene disruption. The complexity of the role of PTHrP in normal physiology increases almost monthly. This complexity is reflected in the broad tissue distribution of the peptide, its complex transcriptional regulation and mRNA instability motifs, and its multiple transcripts and isoforms. It is now clear that additional complexity exists at the level of posttranslational processing. Expression of the PTHrP gene leads to the tissue-specific processing and secretion of an increasingly complex family of derivative peptides, each with its own repertoire of cognate receptors, signal transduction pathways, and physiological consequences. Further elucidation of the posttranslational processing pathways and mechanisms can be anticipated in the coming years, coupled with a corresponding elucidation of multiple PTHrP receptors, their specific signal transduction pathways, and their unique physiological roles. The role of PTHrP in causing HHM is now clearly established. Work in the coming decade will focus on the normal physiological roles played by PTHrP.