We report the isolation of several overlapping cDNAs from an embryonic library of Strongylocentrotus purpuratus coding for a novel sea urchin collagen chain. The conceptual amino acid translation of the cDNAs indicated that the protein displays the structural features of a vertebrate type IV-like collagen alpha chain. In addition to a putative 31-residue signal peptide, the sea urchin molecule contains a 14-residue amino-terminal non-collagenous segment, a discontinuous 1,477-amino acid triple helical domain, and a 225-residue carboxyl-terminal domain rich in cysteines. The amino- and carboxyl-terminal non-collagenous regions of the echinoid molecule are remarkably similar to the 7 S and carboxyl-terminal non-collagenous (NC1) domains of the alpha 1 and alpha 2 chains of vertebrate type IV collagen. The sequence similarity and distinct structural features of the 7 S and NC1 domains strongly suggest that the sea urchin polypeptide is evolutionarily related to the alpha 2(IV) class of collagen chains. Finally, in situ hybridizations revealed that expression of this collagen gene is restricted to the mesenchyme cell lineage of the developing sea urchin embryo.