We have studied the metabolism of 31P-containing metabolites of post-menopausal breast cancers in vivo using magnetic resonance spectroscopy (MRS) and a 5.5 cm surface coil. Spectra were acquired from 23 diameter. The spectra of the 19 previously untreated tumours had significantly higher phosphomonoester (PME) 31P relative peak areas than the normal breasts of eight post-menopausal women (11.7% and 7.7% respectively, P = 0.002). Although an increased PME relative peak area was characteristic of malignancy, PME relative peak area is similarly raised in lactating breast and, therefore, not a specific feature of cancer. An apparently lower nucleotide triphosphate (NTP) relative peak area in tumours than healthy postmenopausal breast was secondary to the differences in PME relative peak area; contamination by signal from chest wall muscle probably accounts for the ostensibly higher phosphocreatine (PCr) relative peak area of the tumours. Spectroscopy was repeated following chemotherapy in six women. An increase in PCr relative peak area was seen in all five patients who responded, but again this may represent increased contamination secondary to changes in tumour size. A fall in PME relative peak area was noted in four responders, but also one non-responder, so this finding may not be sufficiently specific to be of use clinically. Further studies are need to elucidate fully the role of MRS in breast cancer.