A Bayesian strategy for screening cancer treatments prior to phase II clinical evaluation

Stat Med. 1993 Jul 15;12(13):1197-211. doi: 10.1002/sim.4780121303.

Abstract

We address the problem of selecting a treatment for phase II evaluation when several candidate treatments emerging from phase I testing are available. A pre-phase II Bayesian selection design which randomizes patients among treatments is proposed. The patient group in the trial has prognosis more favourable than that of phase I patients but less favourable than the target group of the subsequent phase II trial. The patient response rate distribution in each treatment arm is continually updated during the trial for comparison with early termination cutoffs, and the best final treatment must satisfy a minimal posterior efficacy criterion. The primary aim is to replace the usual informal treatment selection process with a fair comparison formally based on a combination of prior opinion and clinical data.

Publication types

  • Comparative Study

MeSH terms

  • Antineoplastic Agents / adverse effects
  • Antineoplastic Agents / therapeutic use*
  • Antineoplastic Combined Chemotherapy Protocols / adverse effects
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use*
  • Bayes Theorem*
  • Clinical Trials, Phase I as Topic / classification
  • Clinical Trials, Phase I as Topic / statistics & numerical data*
  • Clinical Trials, Phase II as Topic / classification
  • Clinical Trials, Phase II as Topic / statistics & numerical data*
  • Follow-Up Studies
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / mortality
  • Models, Statistical
  • Randomized Controlled Trials as Topic / statistics & numerical data*
  • Remission Induction
  • Survival Analysis
  • Survival Rate

Substances

  • Antineoplastic Agents