A three-dimensional flow simulation at Repeak = 192 and 580 was made in a smooth reverse curvature model that conformed to the gentle "S" shape from a human left femoral artery angiogram. The objective of this numerical investigation was to find the changes in pressure, shear stress, velocity profile, and particle path occurring in the double-curved arterial vessel. Due to the impingement of blood at the outer wall in the first bend region, the wall shear stress approached 40 dyne/cm2--a value over twice as large as in the straight upstream segment. Conversely, at the inner wall in the first bend, a low shear stress region was found where the value of the shear stress was consistently smaller than that in the straight section. The initiation of centrifugal effects caused by the first bend could clearly be seen at Repeak = 580, but due to the close proximity of the reverse curvature segment, the momentum effect due to the second bend overshadowed the centrifugal effect. Hence, only near the end of the second bend did the centrifugal effect due to the second bend result in a double-spiral-secondary motion. In addition, the numerically calculated pressure drop data were in agreement with prior experimental values.