We studied the distribution of messenger ribonucleic acids coding for vasopressin and oxytocin in the human hypothalamus by means of hybridization histochemistry. Numerous large and medium-sized neurons contain vasopressin messenger ribonucleic acid in the paraventricular nucleus, supraoptic nucleus, and accessory magnocellular nucleus. Small, lightly labeled vasopressin neurons also were detected in the suprachiasmatic nucleus. In addition, a relatively sparse band of mostly ovoid, medium-sized vasopressin neurons mingle with unlabeled neurons of the lateral hypothalamic area; these cells extend dorsoventrally from the region ventral to the stria terminalis to the ventrolateral hypothalamus, sometimes transgressing the boundaries of nearby nuclei. We did not detect vasopressin gene expression in neurons of the bed nucleus of the stria terminalis proper, although some of the dorsal-most labeled neurons of the lateral hypothalamus extend into the region of the caudal bed nucleus. Some lateral hypothalamic neurons also encroach upon other extrahypothalamic structures, such as the zona incerta. The nucleus basalis of Meynert complex was, with only rare exceptions, devoid of cells containing vasopressin messenger ribonucleic acid. Oxytocin messenger ribonucleic acid is found in the supraoptic nucleus, paraventricular nucleus, accessory magnocellular nucleus and, less frequently, in neurons of the lateral hypothalamus. In the hypothalamic magnocellular nuclei, oxytocin neurons are somewhat smaller than vasopressin neurons. Vasopressin cells outnumber oxytocin cells in the supraoptic nucleus, but their numbers are comparable in the paraventricular nucleus. As with vasopressin neurons, lateral hypothalamic oxytocin cells loosely span several diencephalic nuclei and encroach occasionally upon adjacent regions. These results confirm that the organization of vasopressin and oxytocin neurons in the human hypothalamus is largely comparable to that in nonhuman species and demonstrate the utility of hybridization histochemistry for elucidating the chemoarchitecture of the human brain.