The dnaG gene encodes primase which synthesizes the primer RNA essential for Escherichia coli chromosomal DNA replication. The nucleotide sequence was determined for the Haemophilus influenzae dnaG gene and used in the molecular evolutionary analysis of primases from six bacterial species. The predicted amino acid (aa) sequence of H. influenzae DnaG contains 593 residues and shares 56% identity with E. coli DnaG. The N-terminal 60% of six aligned bacterial primases contains all 71 absolutely conserved aa residues and several conserved motifs. All six bacterial primases which were sequenced contained a conserved CPFHXEKTPSF(T/S/A)VXXXKQX(F/Y)HCFGC zinc finger (zf) in the N terminus. A basic region in the N-terminal half of the primases contains a conserved motif, G(R/K)X(V/I/L)X(F/Y) (G/S/A)(G/S/A)RX(V/I/L)XXXXP, termed 'RNAP-basic', which is shared only with RNA polymerase (RNAP) large subunits. This conserved sequence represents the first motif common and specific to primases and RNAP subunits. The consensus sequence, PKYLNSPET, lies adjacent to this basic region in bacterial primases and may represent a signature sequence for bacterial DnaG. The C-terminal regions of these primases do not appear to share primary sequence similarities. These findings support our hypothesis that the primase active site of DnaG is located in the N-terminal 60% of the enzyme.