Cutaneous malignant melanoma (CMM) is often familial, but the mode of inheritance and the chromosomal location of melanoma susceptibility locus are controversial. Identification of a 34-year-old woman with eight primary malignant melanomas, multiple atypical moles, and a de novo constitutional cytogenetic rearrangement involving chromosomes 5p and 9p suggested the presence of a melanoma predisposition gene at one of these locations. A high-resolution karyotype showed a partial deletion of a dark-staining Giemsa band, either 5p14 or 9p21. The patient was heterozygous for five 5p14 RFLPs. In situ hybridization with D9S3 indicated that this 9p21 marker was deleted. Gene dosage studies demonstrated the deletion of two more distal 9p21 markers, D9S126 and IFNA. In addition, she was hemizygous for the more proximal 9p21 short tandem-repeat polymorphism at D9S104. D9S18, D9S19, and D9S33 were retained, localizing the deletion to 9p21 between D9S19 on the proximal side and D9S33 on the distal side. Pulsed-field gel electrophoresis with D9S19 and D9S33 did not reveal any junction fragments in the patient's DNA. This germ-line deletion suggests that mutations in a 9p21 gene may initiate melanoma tumorigenesis.