Effect of aerosol heparin on the development of hypoxic pulmonary hypertension in the guinea pig

Am Rev Respir Dis. 1993 Jul;148(1):241-4. doi: 10.1164/ajrccm/148.1.241.

Abstract

Chronic hypoxia produces pulmonary artery hypertension through vasoconstriction and structural remodeling of the pulmonary vascular bed. The present study was designed to test the effect of heparin administered via aerosol on the development of hypoxic pulmonary hypertension. Anesthetized, intubated, and mechanically ventilated guinea pigs received an aerosol of either 2 ml normal saline (hypoxic control, HC) or 4,500 units of heparin diluted in 2 ml normal saline via an ultrasonic nebulizer (hypoxic heparin, HH). After 24 h of recovery, the animals were placed in a hypoxic chamber (10% O2) for 10 days. Animals kept in room air served as normoxic controls (NC). Hypoxia increased mean pulmonary artery pressure from 11 +/- 1 (SEM) mm Hg in NC to 24 +/- 1 mm Hg in HC (p < 0.05). Pulmonary artery pressure was significantly lower in HH-treated animals (20 +/- 1 mm Hg, p < 0.05 versus HC) as was the total pulmonary vascular resistance (0.15 +/- 0.01 in HH versus 0.20 +/- 0.01 mm Hg/ml/min in HC, p < 0.05). There was no difference in cardiac output (146 +/- 12 in HH versus 126 +/- 7 ml/min in HC), hematocrit (57 +/- 2 in HH versus 56 +/- 2% in HC), partial thromboplastin time (30 +/- 2 in HH versus 32 +/- 3 s in HC), prothrombin time (46 +/- 1 in HH versus 48 +/- 4 s in HC) or room air arterial blood gas values after 10 days of hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aerosols
  • Animals
  • Atmosphere Exposure Chambers
  • Cardiac Output / drug effects
  • Drug Evaluation, Preclinical
  • Guinea Pigs
  • Heparin / administration & dosage*
  • Hypertension, Pulmonary / etiology
  • Hypertension, Pulmonary / physiopathology
  • Hypertension, Pulmonary / prevention & control*
  • Hypoxia / complications*
  • Hypoxia / physiopathology
  • Lung / pathology
  • Male
  • Pulmonary Wedge Pressure / drug effects
  • Random Allocation
  • Time Factors
  • Vasoconstriction / drug effects

Substances

  • Aerosols
  • Heparin