Studies of [123I]epidepride uptake in rhesus monkey brain were performed using single photon tomography. Striatal uptake peaked at 0.85% of administered dose/g at 107 min post-injection, then declined slowly to 0.70% of administered dose/g at 6 h. Striatal:posterior brain ratios rose from 2 at 25 min to 6.8 at 105 min, to 15 at 4 h and to 58 at 6.4 h. [123I]Epidepride was displaced by haloperidol (0.1 and 1 mg/kg) with a half-life of washout of 55 min. Little displacement of [123I]epidepride was observed following administration of 1 or 2 mg/kg d-amphetamine, respectively, indicating [123I]epidepride is not easily displaced by endogenous dopamine. In vitro equilibrium binding studies using rat striatum revealed a KD of 46 pM and Bmax of 33 pmol/g tissue at 37 degrees C, while at 25 degrees C the KD was 25 pM and the Bmax 32 pmol/g tissue. In vitro kinetic analysis of association and dissociation curves revealed a half-life for receptor dissociation at 37 degrees C of 15 min and 79-90 min at 25 degrees C. Allowing for the temperature difference, there is good correspondence between in vivo and in vitro dissociation kinetics at 25 degrees C. Increasing in vitro incubation temperature from 25 to 37 degrees C caused a 6-fold increase in the dissociation rate, suggesting that there is a change in binding kinetics at the dopamine D2 receptor at 37 degrees C compared to in vivo binding. The results of this study indicate that [123I]epidepride is an excellent radioligand for SPECT studies of the dopamine D2 receptor in man.