Low-volume resuscitation with hypertonic (7.5%) saline (HTS) is an evolving therapeutic modality for patients with hemorrhagic shock. This solution has been shown to exert protective hemodynamic effects in models of controlled hemorrhagic shock and in several clinical trials. However, HTS has no oxygen-carrying capacity and therefore does not improve oxygen delivery directly. One of the leading strategies in developing an oxygen-carrying resuscitative fluid is the encapsulation of hemoglobin within phospholipid vesicles (LEH). This preparation has the advantage of being blood type and antigen free, easily adaptable to scale-up production, and remarkably stable with a long shelf life. We therefore tested the hypothesis that lyophilized LEH reconstituted with HTS will improve tissue oxygenation and survival in rats exposed to a lethal controlled hemorrhagic shock. Shock was induced by withdrawal of 70% of blood volume and therapy (n = 10-16) with HTS (5 mL/kg), LEH (5 mL/kg), lactated Ringer's solution (vol:vol = 1:3), LEH-HTS (5 mL/kg), or oxygen (100%) was initiated 15 minutes later. The LEH-HTS improved skeletal muscle oxygen tension directly measured using a thin-film chamber oxygen sensor (PO2 87 +/- 13 mm Hg vs. 40-50 mm Hg in other groups, p < 0.05). This was associated with improved blood pressure, reduced acidosis, and increased survival at 24 hours (75% vs. 6%-25% in other groups, p < 0.05). In conclusion, the study demonstrates a remarkably salutary effect of LEH reconstituted with HTS as a blood substitute in the treatment of hemorrhagic shock.