Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity

Am J Respir Cell Mol Biol. 1993 Aug;9(2):126-33. doi: 10.1165/ajrcmb/9.2.126.

Abstract

Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biomechanical Phenomena
  • Cell Division
  • Cell Line
  • Culture Media, Conditioned
  • Fibroblasts / cytology*
  • Growth Substances / physiology*
  • Humans
  • Hyperplasia
  • Hypertrophy
  • Lung / cytology*

Substances

  • Culture Media, Conditioned
  • Growth Substances