Effects of site-directed mutagenesis on the N-glycosylation sites of human lecithin:cholesterol acyltransferase

Biochemistry. 1993 Aug 31;32(34):8732-6. doi: 10.1021/bi00085a002.

Abstract

There are four potential N-glycosylation site (Asn-X-Ser/Thr) in human lecithin:cholesterol acyltransferase (LCAT, residues 20, 84, 272, and 384). To study the role of the N-linked sugars, the codon for Asn at these positions was replaced with one for Thr (AAC to ACC). The wild-type and mutant LCAT cDNAs were used to transfect COS-6 cells from which RNA was isolated; cDNAs were synthesized by reverse transcription and subjected to the polymerase chain reaction, which showed that all transfectants synthesized LCAT-specific mRNA. No intracellular or secreted LCAT was detected with the Asn272-->Thr transfectants, indicating that this residue is essential for intracellular processing. All other single-point transfectants were secretion-competent. Although there was detectable LCAT protein inside the cells and in the media of the transfectant, Asn84-->Thr, its specific activity and secreted amount were only 26% and 58% of the wild type, respectively. This implies that Asn84 is critical for full activity but not for intracellular processing. The amount secreted, specific activity, and Vmax of LCAT (Asn20-->Thr) were similar to those of the wild-type LCAT. LCAT (Asn384-->Thr) differed from the wild-type LCAT only by a lower Km. These results suggest that glycosylation at residues 20 and 384 is not essential for intracellular processing, secretion, or activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Blotting, Western
  • Cells, Cultured
  • DNA
  • Genetic Vectors
  • Glycosylation
  • Humans
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed*
  • Phosphatidylcholine-Sterol O-Acyltransferase / genetics
  • Phosphatidylcholine-Sterol O-Acyltransferase / metabolism*
  • Polymerase Chain Reaction
  • Substrate Specificity
  • Transfection

Substances

  • DNA
  • Phosphatidylcholine-Sterol O-Acyltransferase